Effect of temperature on stability behaviour of functionally graded spherical panel
نویسندگان
چکیده
منابع مشابه
Effect of temperature on free vibration of functionally graded microbeams
Modified couple stress theory is applied to study of temperature effects on free vibration of Timoshenko functionally graded microbeams. Due to the interatomic and microstructural reactions of the structures in micro scale, the dynamic behavior of the microbeam is predicted more accurate applying the couple stress theory. Both of the simply supported and clamped boundary conditions are assumed ...
متن کاملThe Effect of Temperature Dependency on the Thermo-Electro-Elastic Analysis of Functionally Graded Piezoelectric Spherical Shell
Results of electro-thermo-elastic analysis of a functionally graded thick-walled spherical shell made of temperature dependent materials are presented in this article. All material properties are assumed temperature-dependent and also are graded along the thickness direction based on power function. Temperature dependency is accounted for all material properties including, thermal, mechanical a...
متن کاملeffect of oral presentation on development of l2 learners grammar
this experimental study has been conducted to test the effect of oral presentation on the development of l2 learners grammar. but this oral presentation is not merely a deductive instruction of grammatical points, in this presentation two hypotheses of krashen (input and low filter hypotheses), stevicks viewpoints on grammar explanation and correction and widdowsons opinion on limited use of l1...
15 صفحه اولEffect of Temperature Changes on Dynamic Pull-in Phenomenon in a Functionally Graded Capacitive Micro-beam
In this paper, dynamic behavior of a functionally graded cantilever micro-beam and its pull-in instability, subjected to simultaneous effects of a thermal moment and nonlinear electrostatic pressure, has been studied. It has been assumed that the top surface is made of pure metal and the bottom surface from a metal–ceramic mixture. The ceramic constituent percent of the bottom surface ranges fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2015
ISSN: 1757-899X
DOI: 10.1088/1757-899x/75/1/012014